Anonymous Ticketing for NFC-enabled Mobile Phones

David Derler, Klaus Potzmader, Johannes Winter, Kurt Dietrich

Institute for Applied Information Processing and Communications, Graz University of Technology

November 27, 2011

dderler@student.tugraz.at

Sac

INTRUST 2011

Overview

- Introduction
 - Motivation
- Protocol
 - Proof-of-Concept
 - Moving to next-generation-smartphone plattforms
- Conclusion

Э

イロト イポト イヨト イヨト

500

INTRUST 2011

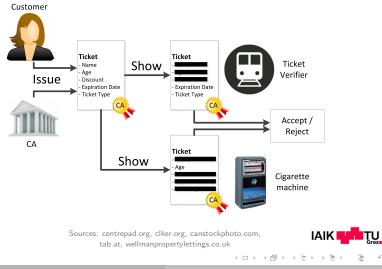
Motivation

- Virtual Tickets on the mobile
 - convenient
 - always at hand
 - privacy-preserving
- Near Field Communication
 - Zero Configuration
 - ...more and more NFC-enabled (smart)phones
- Mobiles pre-equipped with secure chips

Source: mobilewhack.com

SQC

INTRUST 2011


Mobile Ticketing

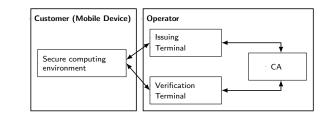
- A ticket denotes a set of properties (attributes) such as
 - Expiration date
 - ► Age
 - ► Name
 - ▶ ...
- Conventional verification is traceable
 - Operator sees name, age,...
 - ...but needs just expiration date
- long-term tickets allow detailed insight on daily route

4 E b

Selective Disclosure Protocols - Zero Knowledge Proof

David Derler Introduction

- Proposed by Glenn et. al of Zero-Knowledge Systems [GGLS01]
 - Based on work of Brands [Bra00]
- Slight variations to suit our needs
 - $\blacktriangleright \ \ Modular \ inversion \rightarrow precomputation$
- Ticket owners remain anonymous
- Unlinkability
 - Unlinkable between issue and show,
 - Although linkable between multiple show sessions



- E - E

Protocol (2)

• Four parties

- ► CA
- ► Issuer
- Customer
- Verifier

- CA publishes DSA parameters and generators
- Issuer and customer jointly compute signature over attributes
- Verifier can ensure authenticity
 - without knowing who he's dealing with

- E - E

I D > I B > I B

SQC

Proof-of-Concept

- Nokia 6131
 - On-board G&D Sm@rtCafe Expert 3.1 Javacard
 - 72kB Memory
 - EEPROM (slow) and transient RAM (fast)

- SCM Microsystems SDI010 contactless reader
 - Addressable via javax.smartcardio.*

Source: Nokia, SCM Microsystems

 $\leftarrow \equiv \rightarrow$

- Need for large Integer operations
- No java.math.BigInteger equivalent on Javacard
- BigInt a collection of static methods for long integer arithmetics
 - Low memory consumption
 - Compatible to BigInteger.toByteArray() representation
 - And therefore to new BigInteger(sign, byte[])
 - Eases exchange of data a lot
 - ► all operations in place/with target array
- Limited computational power \rightarrow performance?

- Utilization of crypto coprocessor
- Using RSA Cipher

ciphertext = message^{public exponent} mod public modulus

- Why not use for modular Exponentiation?
- Limitations
 - $\blacktriangleright \ {\sf message}^1 \to {\sf no} \ {\sf aided} \ {\sf modulo}$

■ のへで INTRUST 2011

Hardware aided (2)

- Modular Multiplication
 - Partial crypto coprocessor support by

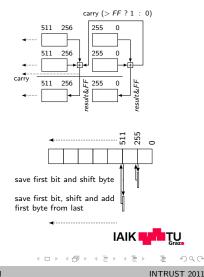
$$a \cdot b \mod n = rac{(a+b)^2 - a^2 - b^2}{2} \mod n$$

- Division by two can be done by right shift
 - If numerator is odd add modulus (odd + prime = even)
- Faster than software-only approach

- 4 同 1 - 4 三 1 - 4 三 1

Hardware aided (3)

- Modular inversion
 - Euler-Fermat
 - $a^{\varphi(n)} \mod n \equiv 1 \mod n \rightarrow$
 - $a^{\varphi(n)-1} \mod n \equiv a^{-1} \mod n$
 - Just one Hardware aided exponentiation needed
 - ► Huge speedup compared to software-only approach
 - exponentiation is done in < 1s



<ロト < 同ト < ヨト < ヨト -

= nan

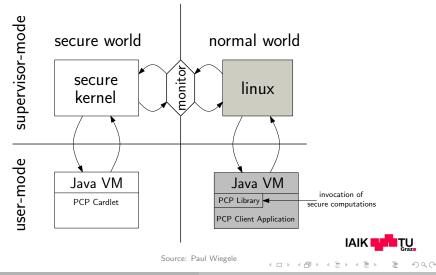
In Software

- Add, Subtract
 - Bytewise operation with carry bit
- Shift
 - Bytewise shift with two temporary bytes
- Modulo

• Timings

Key length [Bits]	768	1024	1280	 1984
Precomputation ¹	1.2s	0.7s	1.1s	 1.3s
Issue Session	5.5s	6.7s	8.6s	 20.8s
Show Session	7.7s	9.5s	11.5s	 16.7s

Table: Computation Times for different key-lengths


- Acceptable up to 1024Bit key-length
- 1984Bit and higher key-lengths exhaust the transient memory

 $\exists \rightarrow$

¹Runs as silent service in the background

Moving to next generation smart-phone platforms

David Derler Protocol

Conclusion

- Javacard variant
 - ► Acceptable timings using precomputation
 - Computation times grow with increasing key length
 - ► Javacard 3.0 connected will provide further large integer support
- Trustzone variant
 - Timings on a real device would be interesting
- In general
 - NFC is of growing popularity
 - Huge field for further research

500

INTRUST 2011

- E - E

Thank you.

References

Stefan A. Brands. *Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy*. MIT Press, Cambridge, MA, USA, 2000.

Ariel Glenn, Ian Goldberg, Frederic Legare, and Anton Stiglic. A description of protocols for private credentials, 2001.

Laszlo Hars.

Modular inverse algorithms without multiplications for cryptographic applications. *EURASIP J. Embedded Syst.*, 2006:2–2, January 2006.

- E - E